
Toward Efficient Techniques
for Completeness Reasoning

Fariz Darari1*, Werner Nutt1, Giuseppe Pirrò2, and Simon Razniewski1

1Free University of Bolzano, Italy
2ICAR-CNR, Italy

*fariz.darari@stud-inf.unibz.it

Abstract. The Semantic Web is commonly interpreted under the open-world as-
sumption: The present information captures only a subset of the reality. A con-
sequence of this assumption is that users can never be sure whether the present
information fully describes the reality or not, which decreases the value one can
derive from querying the Semantic Web. Still, one can observe that the Semantic
Web contains complete information for many aspects of reality. From previous
work, a theoretical framework allowing one to augment RDF data sources with
information about their completeness, was developed. Such information can be
used to check whether the answer returned by a query is complete. Yet, it is still
unclear how such a check can be done in practice. We devise implementation
techniques to make completeness reasoning in the presence of large sets of com-
pleteness statements feasible, and evaluate their effectiveness.

Keywords: RDF, SPARQL, Completeness, Reasoning, Indexing

1 Introduction

The increasing amount of structured data made available on the Web is laying the foun-
dation of a global-scale knowledge base. Projects like Linked Open Data (LOD) [8], by
inheriting some basic design principles of the Web (e.g, simplicity, decentralization),
aim at making huge volumes of data available by the Resource Description Framework
(RDF) standard data format [13]. RDF enables one to make statements about resources
in the form of triples, consisting of a subject, a predicate, and an object. Ontology lan-
guages such as RDF Schema (RDFS) [4] and OWL [10] provide the necessary under-
pinning for the creation of vocabularies to structure knowledge domains. The common
path to access such a huge amount of structured data is via SPARQL endpoints, namely,
network locations that can be queried upon by using the SPARQL query language [7].

With a large number of RDF data sources covering possibly overlapping knowledge
domains, it is natural to observe a wide range of data source quality; indeed, some data
sources are manually-curated while others result from crowdsourcing efforts or auto-
matic extraction techniques [11,3]. In this setting, the problem of providing high-level
descriptions (in the form of metadata) of their content becomes crucial. Such descrip-
tions will connect data publishers and consumers; publishers will advertise “what” is
there inside a data source so that specialized applications can be created for data source

discovering, cataloging, selection, and so forth. Proposals like the VoID vocabulary [1]
touch this aspect. With VoID it is possible, among the other things, to provide informa-
tion about how many instances a particular class has, the SPARQL endpoint of a source,
and links to other data sources. However, VoID mainly focuses on providing quantita-
tive information. We claim that toward comprehensive descriptions of data sources, also
qualitative information is crucial; in particular about completeness.

In previous work, Darari et al. [6] proposed a framework for managing complete-
ness over RDF data sources and introduced the notions of completeness statements to
describe complete parts of data sources, and of query completeness. Moreover, they
investigated the problem of completeness entailment, namely, the check whether a set
of completeness statements entails query completeness. Nevertheless, we expand upon
this work by developing indexing techniques for completeness statements that can re-
duce the number of statements considered in the reasoning. In addition to that, we pro-
vide an experimental evaluation to show that our optimization can considerably reduce
the running time of reasoning with large sets of completeness statements, and make it
comparable to that of query evaluation.

2 Formal Framework

In the following, we remind the reader of RDF and SPARQL, and formalize the basic
notions of the completeness management framework as in [6].

RDF and SPARQL. We assume there are three1 pairwise disjoint infinite sets I (IRIs),
L (literals), and V (variables). We collectively refer to IRIs and literals as RDF terms
or simply terms. A tuple (s, p, o) ∈ I × I × (I ∪ L) is called an RDF triple (or a triple),
where s is the subject, p the predicate and o the object of the triple. An RDF graph or
data source consists of a finite set of triples [13]. For simplicity, we omit namespaces
for the abstract representation of RDF graphs.

The standard query language for RDF is SPARQL. The basic building blocks of
a SPARQL query are triple patterns, which resemble RDF triples, except that in each
position also variables are allowed. SPARQL queries include graph patterns, built us-
ing the AND operator, and more sophisticated operators, including OPT (for “optional”),
FILTER, UNION, and so forth. In this article, we consider the operators AND and OPT.
Graph patterns with only the AND operator are called basic graph patterns (BGPs). Al-
ternatively, one may use a set of triple patterns to represent a BGP. A mapping µ from
variables to terms is defined as a partial function µ : V → I ∪ L. Given a BGP P, the
expression µP returns a graph where all the variables in P are replaced with terms ac-
cording to µ. Evaluating a graph pattern P over an RDF graph G results in a set of
mappings from the variables in P to terms, denoted as ~P�G.

SPARQL queries come as SELECT, ASK, or CONSTRUCT queries. A SELECT query has
the abstract form (W, P), where P is a graph pattern and W is a subset of the variables in
P. A SELECT query Q = (W, P) is evaluated over a graph G by projecting the mappings
in ~P�G to the variables in W, written as ~Q�G = πW (~P�G). Syntactically, an ASK query
is a special case of a SELECT query where W is empty. For an ASK query Q, we write

1 In this work, we do not consider blank nodes.

also ~Q�G = true if ~Q�G , ∅, and ~Q�G = false otherwise. A CONSTRUCT query
has the abstract form (P1, P2), where P1 is a BGP and P2 is a graph pattern. In this
article, we only use CONSTRUCT queries where also P2 is a BGP. The result of evaluating
Q = (P1, P2) over G is the graph ~Q�G, that is obtained by instantiating the pattern P1
with all the mappings in ~P2�G. We focus here on the class of basic queries: queries
(W, P) where P is a BGP and which return bags of mappings (as it is the default in
SPARQL). Further information about SPARQL can be found in [16].

2.1 Completeness Statements

To tackle the problem of completeness management in RDF data sources, we proceed
in two steps: (i) we formalize mechanism allowing one to specify which parts of a data
source are complete; (ii) we devise techniques to check when a query is complete over
a potentially incomplete data source.

When talking about the completeness of a data source, one implicitly compares the
information available in the source with what holds in the world and therefore should
ideally be also present in the source.

Definition 1 (Incomplete Data Source). We identify data sources with RDF graphs.
Then, adapting a notion introduced by Motro [15], we define an incomplete data source
as a pair G = (Ga,Gi) of two graphs, where Ga ⊆ Gi. We call Ga the available graph
and Gi the ideal graph.

Example 1. Consider the DBpedia data source and suppose that the only movies di-
rected by Tarantino are Reservoir Dogs, Pulp Fiction, and Kill Bill, and that Tarantino
was starred exactly in the movies Desperado, Reservoir Dogs, and Pulp Fiction. For the
sake of example, suppose also the fact that he was starred in Reservoir Dogs is missing
in DBpedia.2 Using Definition 1, we can formalize the incompleteness of the DBpedia
data source Gdbp as follows:

Ga
dbp = {(reservoirDogs, director, tarantino), (pulpFiction, director, tarantino),

(killBill, director, tarantino), (desperado, actor, tarantino),
(pulpFiction, actor, tarantino), (desperado, a,Movie),
(reservoirDogs, a,Movie), (pulpFiction, a,Movie), (killBill, a,Movie)}

Gi
dbp = Ga

dbp ∪ { (reservoirDogs, actor, tarantino) }.

We now introduce completeness statements, which are used to describe the parts of
a data source that are complete, that is, the parts for which the ideal and available graph
coincide.

Definition 2 (Completeness Statement). A completeness statement Compl(P1 | P2)
consists of a non-empty BGP P1 and a BGP P2. We call P1 the pattern and P2 the
condition of the completeness statement.

2 as it was the case on 20 June 2015

For example, we express that a source is complete for all pairs of triples that say
“?m is a movie and ?m is directed by Tarantino” using the statement

Cdir = Compl((?m, a,Movie), (?m, director, tarantino) | ∅), (1)

whose pattern matches all such pairs and whose condition is empty. To express that a
source is complete for all triples about actors in movies directed by Tarantino, we use

Cact = Compl((?m, actor, ?a) | (?m, director, tarantino), (?m, a,Movie)), (2)

whose pattern matches triples about actors and whose condition restricts the actors to
those of movies directed by Tarantino. The condition in Cact does not imply that the
data source contains triples of the form (?m, director, tarantino) and (?m, a,Movie). If
we move the condition to the pattern, however, we impose that the data source contains
the triples.

We now define when a completeness statement is satisfied by an incomplete data
source. To a statement C = Compl(P1 | P2), we associate the CONSTRUCT query QC =

(P1, P1 ∪ P2). Note that, given a graph G, the query QC returns a graph consisting of
those instantiations of the pattern P1 present in G for which also the condition P2 can
be satisfied. For example, the query QCact returns the cast of the Tarantino movies in
graph G.

Definition 3 (Satisfaction of Completeness Statements). An incomplete data source
G = (Ga,Gi) satisfies the statement C, written G |= C, if ~QC�Gi ⊆ Ga holds.

The above definition naturally extends to the satisfaction of a set C of completeness
statements, that is, G |= C iff for all C ∈ C, it is the case that ~QC�Gi ⊆ Ga.

Intuitively, an incomplete data source (Ga,Gi) satisfies a completeness statement C,
if the subgraph of Gi identified by C is also present in Ga. For instance, to see that Gdbp

satisfies the statement Cdir, observe that the query QCdir returns over Gi
dbp all triples

with the predicate director and all a (type) triples for Tarantino movies, and that all
these triples are also in Ga

dbp. However, Gdbp does not satisfy Cact, because QCact returns
over Gi

dbp the triple (reservoirDogs, actor, tarantino), which is not in Ga
dbp.

An important tool in later characterizations of completeness entailment is the trans-
fer operator TC, which maps graphs to graphs. Given a set C of completeness state-
ments and a graph G, the operator is defined as

TC(G) =
⋃
C∈C

~QC�G. (3)

It takes the union of evaluating over G all corresponding CONSTRUCT queries of the state-
ments in C. Crucial properties of the transfer operator are summarized in the following
proposition:

Proposition 1 (Properties of TC). Let C be a set of completeness statements. Then,

1. (Ga,Gi) |= C iff TC(Gi) ⊆ Ga.

Consequently, for any graph G we have that

(2) the pair (TC(G),G) is an incomplete data source satisfying C, and
(3) TC(G) is the smallest available graph for which this holds.

2.2 Query Completeness

When querying a data source, we want to know whether the answer to our query is
complete wrt. the real world. For instance, when querying DBpedia for movies starring
Tarantino, it would be interesting to know whether we really get all such movies. We
now formalize query completeness wrt. incomplete data sources.

Definition 4 (Query Completeness). Let Q be a SELECT query. To express that Q
is complete, we write Compl(Q). An incomplete data source G = (Ga,Gi) satisfies
Compl(Q), if Q returns the same result over Ga as it does over Gi, that is, ~Q�Ga =

~Q�Gi . In this case we write G |= Compl(Q).

In this work, we focus on classes of queries that are monotonic. Therefore, by defi-
nition it holds that ~Q�Ga ⊆ ~Q�Gi for all incomplete data sources G = (Ga,Gi).

Example 2. Consider the incomplete data source Gdbp and the two queries Qdir, asking
for all movies directed by Tarantino, and Qdir+act, asking for all movies both directed
by and starring Tarantino:

Qdir = ({ ?m }, { (?m, a,Movie), (?m, director, tarantino) })
Qdir+act = ({ ?m }, { (?m, a,Movie), (?m, director, tarantino), (?m, actor, tarantino) }).

Then, it holds that Qdir is complete overGdbp since ~Qdir�Ga
dbp

= { { ?m 7→ reservoirDogs },
{ ?m 7→ pulpFiction }, { ?m 7→ killBill } } = ~Qdir�Gi

dbp
. On the other hand, Qdir+act

is not complete over Gdbp since ~Qdir+act�Ga
dbp

does not contain the mapping { ?m 7→
reservoirDogs }, which occurs in ~Qdir+act�Gi

dbp
.

2.3 Completeness Entailment

Up to this point, we have provided examples with concrete incomplete data sources. In
the following definition, we formalize the entailment of query completeness by com-
pleteness statements. This way, we ‘quantify’ over all incomplete data sources such
that if a source satisfies the completeness statements, then it must also satisfy the query
completeness.

Problem Definition. Let C be a set of completeness statements and Q be a SELECT
query. We say that C entails the completeness of Q, written C |= Compl(Q), if any
incomplete data source that satisfies C also satisfies Compl(Q).

Example 3. Consider Cdir from Equation (1). Whenever an incomplete data source G
satisfies Cdir, then Ga contains all triples about movies directed by Tarantino, which is
exactly the information needed to answer query Qdir from Example 2. Thus, {Cdir } |=

Compl(Qdir). However, this is not enough to completely answer Qdir+act, thus {Cdir } 6|=

Compl(Qdir+act).

Characterizing Completeness Entailment. The query class we consider in this work is
the class of queries with a conjunctive body. The standard semantics for such queries
is bag semantics, which allows repetition of results. Generally, a basic query Q is com-
plete wrt. a set C of completeness statements, if for every incomplete data source
G = (Ga,Gi) satisfying C, the query answers over Gi are contained in the query an-
swers over Ga, where duplicates are taken into account. That is, a mapping occurring n
times in ~Q�Gi , must occur at least n times in ~Q�Ga . Actually, since Ga ⊆ Gi, and since
conjunctive queries are monotonic, we always have that the bag ~Q�Ga is contained in
the bag ~Q�Gi . Hence, Q is complete over G iff every mapping occurring n times in
~Q�Gi occurs also n times in ~Q�Ga .

We want to provide a characterization of completeness entailment for basic queries.
Let us give an example to provide an intuition of the characterization.

Example 4. Consider the set Cdir,act consisting of Cdir from Equation (1) and Cact from
Equation (2). Recall the query Qdir+act = ({ ?m }, Pdir+act), where

Pdir+act = { (?m, a,Movie), (?m, director, tarantino), (?m, actor, tarantino) }.

We want to check whether these statements entail the completeness of Qdir+act, that is,
whether Cdir,act |= Compl(Qdir+act) holds.

Suppose that G = (Ga,Gi) satisfies Cdir,act. Suppose also that Qdir+act returns a
mapping µ = { ?m 7→ m′ } over Gi for some term m′. Then, Gi contains µPdir+act, the
instantiation by µ of the BGP of our query, consisting of the three triples (m′, a,Movie),
(m′, director, tarantino), and (m′, actor, tarantino).

The CONSTRUCT query QCdir , corresponding to our first completeness statement, re-
turns over the graph µPdir+act the two triples (m′, a,Movie) and (m′, director, tarantino),
while the CONSTRUCT query QCact , corresponding to the second completeness statement,
returns the triple (m′, actor, tarantino). Thus, all triples in µPdir+act have been recon-
structed by TCdir,act from µPdir+act.

Now, we have that

µPdir+act = TCdir,act (µPdir+act) ⊆ TCdir,act (G
i) ⊆ Ga,

where the last inclusion holds due to G |= Cdir,act. Therefore, our query Qdir+act returns
the mapping µ also over Ga. Since µ and G were arbitrary, this shows that Cdir,act |=

Compl(Qdir+act) holds.

In summary, in the above example we have reasoned about a set of completeness
statements C and a basic query Q = (W, P). We have considered a generic mapping µ,
defined on the variables of P, and applied it to P, thus obtaining a graph µP. Then, we
have verified that µP = TC(µP). From this, we could conclude that for every incomplete
data source G = (Ga,Gi) we have that ~Q�Ga = ~Q�Gi . Next, we make this approach
formal.

Definition 5 (Prototypical Graph). Let (W, P) be a query. The freeze mapping ĩd is
defined as mapping each variable ?v in P to a new IRI ṽ. Instantiating the graph pattern
P with ĩd yields the RDF graph P̃ := ĩd P, which we call the prototypical graph of P.

Now we can generalize the reasoning from above to a generic completeness check.
To check whether the completeness of a query is entailed by a set of completeness state-
ments, we evaluate all the corresponding CONSTRUCT queries of the statements over the
prototypical graph P̃ and check whether over the evaluation result, we have P̃ back. In-
tuitively, this means that over any possible graph instantiation for answering the query,
the completeness statements guarantee that we have back the graph instantiation in our
data source.

Theorem 1 (Completeness of Basic Queries). Let C be a set of completeness state-
ments and Q = (W, P) be a basic query. Then,

C |= Compl(Q) iff P̃ = TC(P̃).

The following complexity result follows as the completeness check is basically eval-
uating a linear number of CONSTRUCT queries over the conjunctive body of the query.

Corollary 1. Deciding whether C |= Compl(Q), given a set C of completeness state-
ments and a basic query Q = (W, P), is NP-complete.

The result shows that the complexity of completeness reasoning is not higher than
that of conjunctive query evaluation, which is also NP-complete [5].

Up to this point, we are now able to formalize completeness statements on the Web.
Using those statements, we can check whether a SPARQL query returns complete an-
swers. In general, the technique to check query completeness incorporates the evalua-
tion of the corresponding CONSTRUCT queries of the statements. Now, the question arises
how much is the cost of the reasoning, in particular, compared to the cost of evaluating a
query. Furthermore, in some applications there may be a large number of completeness
statements, thus one may ask how feasible it is to perform completeness reasoning, and
how to implement completeness reasoning in an efficient way.

3 Implementing Completeness Reasoning

In this section, we present the results of our investigation on efficient completeness
reasoning over large sets of completeness statements. We first provide an overview of
the problem with reasoning over large sets of statements, followed by a description
of the predicate-relevance principle, which can be used to prune the set of statements
considered in reasoning, and then a report on several retrieval techniques of predicate-
relevant statements.

3.1 Problem Overview

Real-world RDF data sources may contain a large amount of data. For example, from
the English Wikipedia, DBpedia extracted 580 million RDF triples.3 Obviously, neither
is all information from those triples complete, nor is its completeness interesting. If a

3 http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.html

http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.html

fifth of those triples were captured by completeness statements, each of which accounts
for 100 triples, then there would be about 1 million completeness statements in total
needed for DBpedia.

Now, the question is, how fast can we perform completeness reasoning with 1 mil-
lion statements? Using a plain completeness reasoner that implements reasoning by
evaluating the CONSTRUCT queries of all the completeness statements, we observed that
reasoning may take 13 minutes, which is about 35,000 times slower than query evalua-
tion (see Table 1).4 Obviously, in practice this is not feasible as completeness reasoning
would be performed as often as query evaluation. Indeed, the reason why a plain rea-
soner may take very long is that it takes into account all the completeness statements
in the reasoning. However, not all statements will contribute to the entailment of query
completeness. In fact, according to Theorem 1 that characterizes completeness entail-
ment of basic queries, for a complete query with n triple patterns, there is a set of no
more that n completeness statements that already entails the completeness of that query.
From this observation, we might wonder if we could find a priori exactly those n com-
pleteness statements. However, as there is no obvious way to identify a priori such a set
of at most n statements, in the worst case all statements have to be checked.

Table 1: Comparison of the running time median for plain completeness reasoning and
query evaluation

Query Types Plain Reasoning Query Evaluation

Short 758,001 ms 20 ms
Long 781,286 ms 36 ms

Still, we observe that we can rule out a significant number of completeness state-
ments that are clearly irrelevant to entailing query completeness, so that only the rel-
evant ones are considered. Take an example where the query is “All movies directed
by Tarantino” and the statement is “All football players of Arsenal.” Obviously, there
is no way the statement can guarantee the completeness of the query. We propose
the predicate-relevance principle as a way to distinguish between irrelevant and rel-
evant completeness statements. The principle states that a completeness statement can
contribute to entailing query completeness only if all predicates of the completeness
statement occur also in the query. We say that a statement satisfying this principle is
predicate-relevant. We show later that the principle has a high selectivity, meaning it
can rule out a considerable amount of completeness statements from being considered
in completeness reasoning. As an illustration, among 1,000,000 randomly generated
statements and a randomly generated query, on average only about 500 statements are
predicate-relevant to the query.

4 The results are from our experimental evaluation using randomly generated completeness
statements and queries

The question is now, how can we efficiently retrieve those predicate-relevant state-
ments? It turns out that the task of retrieving predicate-relevant statements is basically a
task of subset querying, which has been well-studied. Therefore, we show later how we
adopt existing index structures (i.e., inverted indexes and tries) for subset querying to
retrieve predicate-relevant statements. In addition, we also develop a baseline approach
based on standard hashing. We then conduct experimental evaluations to analyze the
suitability of the different approaches in terms of retrieval time and scalability, and to
compare the running times of plain completeness reasoning, completeness reasoning
using the predicate-relevance principle, and query evaluation in Section 4.

3.2 Filtering Based on Predicate-Relevance

Let us estimate the complexity of the completeness reasoning task, from which we
formulate the predicate-relevance principle.

Let Q = (W, P) be a query and C be a set of completeness statements. According
to Theorem 1, the task of completeness reasoning for basic queries is to check whether
TC(P̃) = P̃, where TC is the transfer operator wrt. C, and P̃ is the prototypical graph
of Q. While the ‘⊆’ direction of the equality trivially holds, the interesting part is the
‘⊇’ direction. It is the problem of finding for each triple (s, p, o) ∈ P̃ a completeness
statement C ∈ C such that (s, p, o) ∈ ~QC�P̃. Note that TC(P̃) =

⋃
C∈C~QC�P̃. This

already tells us that we only find statements that potentially match such a triple (s, p, o).
Let Q = (W, P) be a query, C be a set of completeness statements, and maxLn(C)

be the maximum length of statements in C. Take any C ∈ C. To evaluate the query QC

over P̃, we have to consistently map the triple patterns of QC to triples in P̃. There are
at most |P̃||QC | possible ways to map triple patterns to triples, where |QC | and |P̃| stand
for the number of triple patterns and triples in QC and P̃, respectively. If we do this for
each statement in C, the overall running time is O(|C||P̃|maxLn(C)). We are considering
the case where the query Q is given and the set of completeness statements varies. It
also seems reasonable to assume that the maximum length of completeness statements
is a global constant, that is, all possible statements are at most of that length. Under
this assumption, the cost of reasoning only depends on the size of the set of complete-
ness statements. Therefore, we want to reduce the number of statements employed in
completeness reasoning by considering only relevant ones.

Predicate-Relevance Criterion Although in general, predicates can be variables, in re-
ality it is very unlikely that a source can be complete for all properties of resources.
Therefore, we are only interested in queries and statements whose predicates are IRIs.
We use the operator pred(C) for a completeness statement C to represent the set of all
IRIs for predicates in C, and similarly, the operator pred(Q) for a query Q.

Definition 6 (Predicate-Relevant Statements). The completeness statement C is predicate-
relevant wrt. the query Q if pred(C) ⊆ pred(Q).

The following proposition shows that if a statement is not predicate-relevant, then
it does not contribute anything to completeness reasoning.

Proposition 2. Let C be a completeness statement and Q = (W, P) be a query. If C is
not predicate-relevant wrt. Q, then ~QC�P̃ = ∅.

The proposition holds because of the following: Suppose that C is not predicate-
relevant wrt. Q. This means that pred(C) * pred(Q). Thus, it is the case that ~QC�P̃ = ∅

since we cannot find any match for the triple patterns in QC with IRIs of the predicates
not in pred(Q).

Selectivity of Predicates We argue that the predicate-relevance principle is effective
to prune the set of completeness statements in completeness reasoning. We analyze
the selectivity of the principle over randomly generated completeness statements and
queries with a uniform distribution of predicates, where we assume, for the sake of
simplicity, that any two triple patterns in a query or a statement have distinct predicates.

Let us fix the number of possible IRIs for predicates Np, the length of the com-
pleteness statements Lc,5 and the length of the query Lq. Then, the number of differ-
ent predicate sets of completeness statements is

(
Np
Lc

)
, which is the number of ways to

choose Lc predicates out of the existing Np. A statement C is relevant to query Q if
pred(C) ⊆ pred(Q). Since there are Lq predicates in pred(Q), and all predicates of a
relevant statement have to be among these, there are

(
Lq
Lc

)
many ways to choose the pred-

icate set of a relevant statement. We obtain the selectivity ratio by dividing the latter
number by the former, that is,

α(Np, Lc, Lq) =

(
Lq
Lc

)(
Np
Lc

) .
As an illustration, for Np = 100, Lc = 3, and Lq = 10, the selectivity ratio is α(Np, Lc, Lq) =

0.000742. This means that, among 1 million completeness statements, there are only
about 742 predicate-relevant statements. Furthermore, it is the case that the greater the
value of the number of predicates, the smaller the selectivity ratio. Similarly, the greater
the size of the statements, the smaller the ratio. In constrast, the longer the query, the
greater the ratio. We believe that for a large data source with heterogeneous domain
(e.g., DBpedia), the value of Np tends to be large. On the other hand, the values of Lc

and Lq tend to be small in a relatively constant range. Eventually, the selectivity ra-
tio α(Np, Lc, Lq) will become very small, meaning the predicate-relevance principle is
likely to have a good selectivity, and thus can reduce the number of statements consid-
ered in completeness reasoning.

3.3 Techniques for the Retrieval of Predicate-Relevant Statements

For a set C of completeness statements, we want to know how to retrieve as efficiently
as possible those statements that are predicate-relevant wrt. a given query Q. Here, we
give an overview of techniques to retrieve such statements.

The statements in C that are predicate-relevant to Q are those all of whose predicates
appear in Q. We denote this set as CQ, that is,

CQ = {C ∈ C | pred(C) ⊆ pred(Q) }.

5 The length is the number of triple patterns in the body of the correspondingCONSTRUCT query
of the statements.

To compute CQ from C and Q, is an instance of the well-established subset querying
problem, which has been investigated by the AI and database communities (see e.g.,
[14]).

The subset querying problem itself is defined as follows: Given a set S of sets, and
a query set Sq, retrieve all sets in S that are contained in Sq. In our setting, S consists
of the predicate sets pred(C) of the completeness statements C, while the query set Sq

consists of the predicates in Q, that is, Sq = pred(Q).
We study two retrieval techniques based on specialized index structures for subset

querying, namely, inverted indexes and tries. In addition, we develop a baseline tech-
nique based on standard hashing. In Section 4, we present experimental evaluations
comparing retrieval time and scalability for the three techniques.

Running Example Throughout the description below, we will provide examples refer-
ring to a set C = {C1,C2,C3,C4 } of completeness statements with

– pred(C1) = { a, b },
– pred(C2) = { a, b, c },
– pred(C3) = { a, b, c },
– pred(C4) = { d },

and a query Q with pred(Q) = { a, b }. It is the case that CQ = {C1 }, as C1 is the only
statement in C all of whose predicates are contained in pred(Q).

We now describe how these retrieval techniques work and how we implemented
them for our experiments. The implementation language was Java. We represent com-
pleteness statements using a class CompletenessStatement, while predicates are simply
represented by standard Java strings.

Standard Hashing-based Retrieval In this baseline approach, we translate the prob-
lem of subset querying into one of evaluating exponentially many set equality queries.
Hashing supports equality queries by performing retrieval of objects based on keys. We
store completeness statements according to their predicate sets using a hash map. For
each of the 2|pred(Q)| − 1 non-empty subsets of pred(Q), we generate a set equality query
using the hash map to retrieve the statements with exactly those predicates. In our ex-
ample, the non-empty subsets of pred(Q) are {a}, {b}, and {a, b}. Querying for both {a}
and {b} returns the empty set, while querying for {a, b} returns the set {C1}. Taking the
union of these three results gives us {C1} as the final result.

Implementation To index the statements, we use a standard Java HashMap. To each
statement, we associate a key that uniquely represents the set of its predicates. We do
that by creating a lexicographically ordered sequence of the predicates in the statement.
We use the standard Java List to represent sequences and the sort method of the Java
Collections class for sorting. Then, for such a key, the value in the hash map is the set
of all statements having exactly the predicates mentioned in the key. To compute CQ,
we generate all sequences corresponding to the nonempty subsets of pred(Q), retrieve
the values to which they are mapped using the get method of the HashMap, and take the
union of the values.

Inverted Indexing-based Retrieval Inverted indexes have been originally developed
by the information retrieval community for search engine applications [18]. In the in-
formation retrieval domain, an inverted index is a data structure that maps a word to the
set of documents containing that word. Inverted indexes are typically used for finding
documents containing all words in a search query, that is, for superset querying.

In database applications, inverted indexes are also used for subset querying. In
object-oriented databases, objects may have set-valued attributes. Given an attribute
and a query set, one may want to find all the objects whose set of attribute values is
contained in the query set. Helmer and Moerkotte [9] compared indexing techniques
for an efficient evaluation of set operation queries (i.e., subset, superset and set equal-
ity) involving low-cardinality set-valued attributes. The indexing techniques they con-
sidered were inverted indexes and three other techniques that are signature-based (i.e.,
sequential signature files, signature trees, and extendible signature hashing). There, an
inverted index maps each value to the objects whose set-valued attribute contains that
value. Their experimental evaluations showed that in terms of retrieval costs, inverted
indexes overall performed best.

Formalization For a set C of completeness statements, we let P =
⋃

C∈C pred(C) be
the set of all predicates in C. We define the map M : P → 2C such that M(p) = {C ∈
C | p ∈ pred(C) } for every predicate p ∈ P. In other words, M maps each predicate
occurring in C to the set of completeness statements in C containing that predicate. We
call such a map an inverted index. The inverted index M of our example is shown below.

Predicates Completeness Statements

a C1, C2, C3

b C1, C2, C3

c C2, C3

d C4

We now want to retrieve predicate-relevant statements using inverted indexes. As
a first attempt, for a query Q and the inverted index M of a set C of completeness
statements, we consider the set union

⋃
p∈pred(Q) M(p) of the mappings of the predicates

occurring in the query. In our example, this is the set {C1,C2,C3 }. However, though the
resulting set is smaller than the original set C, it is still bigger than Cq, since it contains
statements that are not predicate-relevant (i.e., C2 and C3).

Now, instead of the set union, let us consider bag union. For a start, assume that
M(p) is now a bag that contains as many copies of a statement C as there are occurrences
of p in C. In our running example, each M(p) still contains at most one copy of a
statement. Next, we take

BQ =
⊎

p∈pred(Q)

M(p),

which is the bag of all statements that have at least one predicate in Q, and where a
statement occurs as many times as it has occurrences of predicates appearing in the
query Q. With respect to our example, BQ = M(a)] M(b) = {|C1,C1,C2,C2,C3,C3 |}.
Let us analyze which statements are predicate-relevant. The statement C1 occurs twice
in BQ and has length 2, hence, all its predicates appear in the query Q. However, the
statements C2 and C3 both have length 3, but occur only twice in BQ. This means that
they have other predicates that do not appear in the query Q and thus, they are not
predicate-relevant. Therefore, we conclude that CQ = {C1 }.

We can generalize our example to arrive at a characterization of the set CQ. The
example shows that we need to count the occurrences of completeness statements in
BQ. We denote the count of a statement C in BQ by #C(BQ). As seen from the example,
those statements whose number of occurrences is the same as the number of predicates
are the predicate-relevant ones. In this case, for a statement C, we take the bag version
of pred(C). Then CQ satisfies the equation

CQ = {C ∈ BQ | #C(BQ) = |pred(C)| }.

Implementation We observe from the formalization that the crucial operations for the
retrieval technique using inverted indexes are bag union and count. We chose the Google
Guava library6 as it provides a bag implementation in Java with the class HashMultiset,
which includes as methods the bag union and count. To implement the inverted index,
we use the Java HashMap. The index maps each predicate p to the HashMultiset rep-
resenting the bag of completeness statements containing that predicate (i.e., M(p)). As
shown in the formalization above, to retrieve BQ, we perform a bag union, using the
addAll method of the HashMultiset, of the map values of the predicates in Q. Then,
to retrieve the set CQ of predicate-relevant statements, we count the number of occur-
rences of the statements in BQ using the count method of the HashMultiset and check
if the count is the same as the size of the statement.

Trie-based Retrieval A trie, or a prefix tree, is an ordered tree for storing sequences,
whose nodes are shared between sequences with common prefixes. Tries have been
adopted for set-containment queries in the AI community by Hoffmann and Koehler [12]
and Savnik [17]. Both studies showed by means of empirical evaluations that tries can
be used to efficiently index sets, and perform subset and superset queries upon those
sets. Set operations are essential in AI applications, including the matching of a large
number of production rules and the identification of inconsistent subgoals during plan-
ning.

Formalization We show how to adopt tries to our setting. The sequences we consider
are sequences of predicates that are ordered lexicographically. For a set C of statements,
we define SC as the set containing for each statement in C the corresponding sequence
of predicates. The trie TC over the set SC of sequences is the tree whose nodes are the
prefixes of SC, denoted as Pref (SC), where each node s̄ ∈ Pref (SC) has a child s̄ · p iff
s̄·p ∈ Pref (SC), where p is a predicate. On top of this trie, we define M : Pref (SC)→ 2C

6 https://github.com/google/guava

https://github.com/google/guava

as the mapping that maps each prefix to the set of statements whose predicates are
exactly those in the prefix.

In our example, we have that SC = { (a, b), (a, b, c), (d) } and M = { (a, b) 7→
{C1 }, (a, b, c) 7→ {C2,C3 }, (d) 7→ {C4 } }. For simplicity, we left out mappings with
empty value in M. A graphical representation of the trie TC is shown below, which also
shows the map value of each node wrt. M.

()

(d) : {C4 }(a)

(a, b) : {C1 }

(a, b, c) : {C2,C3 }

Having built a trie from completeness statements, we now want to retrieve the
predicate-relevant statements wrt. a query. Let us do that for our example. Consider the
trie TC as above. As pred(Q) = { a, b }, the sequence of pred(Q) is therefore s̄Q = (a, b).
The key idea behind our retrieval is that we visit nodes that are subsequences of the
query sequence and collect the map values of the visited nodes wrt. M. We start at
the root of TC with the query sequence (a, b) and an empty set of predicate-relevant
statements. The root node is trivially a subsequence of s̄Q and the mapping of the root
obviously returns an empty set. Thus, our set of predicate-relevant statements is still
empty.

At this position, we have two options. The first is to retrieve from TC all the subse-
quences containing the head of the current query sequence, that is, the predicate a. By
the trie structure, all such subsequences reside in the subtree of TC rooted at the con-
catenation of the root of the current trie and the head of the current query sequence. We
then proceed down that subtree. To proceed down, the head of the query sequence has
to be removed. Therefore, our current query sequence is now (b). As the map value of
the root (a) of the current trie is empty, we still have an empty set of predicate-relevant
statements. From this position, we try to visit the subsequences in TC that not only con-
tain a, but also one additional predicate from the current query sequence. Therefore, we
continue proceeding down the subtree rooted at (a, b), which is the concatenation of the
root of the current trie and the head of the current query sequence. From the mapping
result of the root (a, b), the set of predicate-relevant statements is now {C1 }. Since our
current query sequence is now the empty sequence, we do not proceed further.

Now, let us pursue the second option. We stay at the position at the root of TC,
while simplifying s̄Q by removing the head of the query sequence, making it now (b).
In this case, we want to visit all the subsequences in the trie TC that do not contain
the predicate a, if they exist. Now, we try to proceed down the subtree rooted at the

concatenation of the root of the current trie and the head of the current query sequence.
This means we have to proceed down the subtree rooted at (b). Since it does not exist,
we stay with the current trie and remove again the head of the query sequence. As the
query sequence is now an empty sequence, we do not go further and finish our whole
tree traversal. As a final result, we have our set of predicate-relevant statements which
contains only C1.

From our example, we now formalize the retrieval of predicate-relevant statements
using tries. We can decompose a non-empty sequence s̄ = (p1, . . . , pn) into the head
p1 and the tail (p2, . . . , pn). For a sequence s̄ and a trie T, we define T/s̄ as the sub-
tree in T rooted at the node s̄. Note that T/s̄ is the empty tree ⊥ if such a subtree does
not exist. We define cov(s̄Q,TC) as the set of completeness statements in C whose se-
quences of their predicates are subsequences7 of s̄Q. It follows from this definition that
cov(s̄Q,TC) = CQ. We observe that the function cov satisfies the following recurrence
property, where s̄ = p · s̄′ is a subsequence of s̄Q and T is a subtree of TC:

cov(s̄,T) =


∅ if T = ⊥

M(root(T)) if s̄ = ()
M(root(T)) ∪ cov(s̄′,T/root(T) · p) ∪ cov(s̄′,T) otherwise.

Note that in the above property, the function cov performs pruning: when a sub-
tree in the call cov(s̄,T/root(T) · p) does not exist, we cut out all the recursion call
possibilities if the subtree existed. Let us give an illustration. For a query sequence
s̄Q = (p1, . . . , pn) of length n, there are at most 2n possible subsequences. However,
half of them (those containing p1) lie in the tree rooted at the node (p1). If there is no
node (p1), the size of the search space is immediately reduced to 2n−1.

Implementation. We represent sequences of predicates in Pref (SC) using the Java class
of List<String>. For implementing the trie TC, we create a class Trie. For the trie
nodes, we create TrieNode objects labeled with sequences of predicates. A TrieNode
has a hash map to store its children, mapping sequences of predicates of the children
to the corresponding TrieNode objects. Initially, a Trie has a TrieNode object as its
root with an empty sequence as the label. For every insertion of a sequence of the predi-
cates of a completeness statement, we recursively generate children of TrieNode objects
starting from the root to the leaf node with that sequence as the label. This generates a
path of TrieNode objects labeled with the prefixes of that sequence. TrieNode objects
are shared between sequences with the same prefixes. To implement the map M for the
trie, a Java HashMap similar to the one in the implementation of the standard hashing
technique is created.

For the retrieval, we implemented a recursion method based on the recurrence prop-
erty of the cov function. In the method, for each visited node, we use the HashMap of
M to map the label of the node to its corresponding set of completeness statements. All
the mapping results are collected in a standard Java set which at the end of the method
call will be our set CQ of predicate-relevant statements.

7 not necessarily contiguous

4 Experimental Evaluation

We have discussed in Section 3 the predicate-relevance principle as a means to prune
the set of completeness statements. We have also introduced three retrieval techniques,
based on standard hash maps, inverted indexes, and tries as index structures. We now
present an experimental evaluation of completeness reasoning with the aim

1. to compare the retrieval time of the three techniques, and
2. to compare the time needed for completeness reasoning (without and with the

predicate-relevance principle) with the time for query evaluation.

4.1 Experimental Setup

We created a framework for the experiments consisting of two components: a complete-
ness reasoner and a random generator of statements and queries.We implemented the
framework in Java using the Apache Jena library.8

The completeness reasoner includes implementations of the three retrieval tech-
niques as described before and supports two kinds of reasoning: plain reasoning and
reasoning based on predicate-relevance. For the former, we simply consider all state-
ments in C, whereas for the latter, we only consider the statements in CQ.

As RDF completeness statements are not yet available in the real world, we ran-
domly generate queries and sets of completeness statements according to the following
parameters:

– number of completeness statements (Nc),
– number of IRIs for predicates (Np),
– maximum length of completeness statements (Lc), and
– length of queries (Lq).

We describe the rationale behind those parameters. The parameter Nc determines
the overall size of the input. We expect that the bigger a data source, the more the
completeness statements are declared over that source. The parameter Np represents
the domain heterogeneity of data sources. It is likely that the more heterogeneous a
data source, the more heterogeneous are the completeness statements over the source,
and therefore, the more varied are the IRIs of the predicates of the statements. While
Nc and Np characterize data sources, the latter two parameters, Lc and Lq characterize
the statements and queries. They have been chosen to investigate the sensitivity of each
retrieval technique to the size of the completeness statements and the query.

To evaluate the retrieval techniques, we want to observe the influence of each pa-
rameter on the retrieval time. Thus, we set up four scenarios, where in each we keep
three of the parameters fixed and vary the remaining one. For each of the first three pa-
rameters we choose the default values Np = 2,000, Nc = 1,000,000 and Lc = 10. For the
query length, we have two default values, to distinguish between short queries (Lq = 3)
and long queries (Lq = 10). We believe that these default values represent a good ap-
proximation of realistic parameter values for large RDF data sources, like DBpedia.

8 http://jena.apache.org/

http://jena.apache.org/

DBpedia has about 2,700 properties and contains 580 million RDF triples, extracted
from the English Wikipedia.9 The first number is close to our value of Np = 2,000.
Further, if we assume that a fifth of the triples are captured by completeness statements,
and that each statement covers 100 triples, then DBpedia would have 1,160,000 com-
pleteness statements, which again is close to our value of Nc = 1,000,000. The length
of queries were chosen based on the statistics of SPARQL queries over DBpedia. Arias
et al. [2] found that 97% of DBpedia queries are of length less than or equal to 3. There-
fore, we chose 3 as the length for short queries. On the other hand, 99.9% of queries
over DBpedia had length less than or equal to 6, so a value of Lq = 10 really stands for
exceptionally long queries.

The experiments were run on a standard laptop under Windows 8 with Intel Core
i5 2.4 GHz processor and 8 GB RAM. For each combination of parameter values, we
ran the experiment 20 times to obtain reliable results (i.e., low variance if we performed
the experiments again), and took the median of the running times. We observed that
the median was better than the mean as the mean led to some oscillations, though the
general trends of the results were the same.

Random Generation of Statements and Queries The statements and queries for the ex-
periments have been generated randomly with a uniform distribution of the predicates.
The generated statements were of the form Compl(P1 | ∅), that is, they did not have
a condition, while the generated queries were of the form (var(P), P), that is, all vari-
ables in the body were distinguished. The generation of statements and queries consists
essentially in the generation of the triple patterns that are their building blocks.

The triple patterns of a statement are generated as follows. First, we pick a random
number between 1 and Lc. This number determines the length of the statement, that
is, the number of triple patterns in P1. Then we randomly choose the predicates of the
triple patterns among Np possible IRIs, where repetitions are allowed. Next, for this
collection of predicates, we generate fully-formed triple patterns.

To do that, we instantiate the subjects and objects of triple patterns, by constants or
variables. For the instantiation by constants, we always use the same constant, while we
do not limit the possibility to introduce new variables. Variables can be reused across
triple patterns. We allow only one constant instead of many in order to maximize the
chance that statements be applicable to a query. We generate variables in such a way
that there is no cross-product join between triple patterns of the statement, that is, the
triple patterns with variables form one connected component. Together, the generated
triple patterns become the pattern P1 for that statement. We repeat this process until
there are Nc randomly generated statements. Similarly, we generate triple patterns for
the query of length Lq, whose collection of predicates are also chosen randomly among
the Np possible IRIs.

4.2 Comparison of Retrieval Techniques for Predicate-Relevant Statements

We now show the experimental results comparing the retrieval time of the three tech-
niques. In each scenario, we vary one of these parameters: number of statements, num-
ber of IRIs for predicates, length of completeness statements, and query length.

9 http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.html

http://lists.w3.org/Archives/Public/public-lod/2014Sep/0028.html

100 300 500 700 900 1,100
101

102

103

Number of CS’s in Thousands

R
et

ri
ev

al
Ti

m
e

in
µ

s

100 300 500 700 900 1,100

102

103

104

Number of CS’s in Thousands

R
et

ri
ev

al
Ti

m
e

in
µ

s

Standard Hashing Inverted Trie

Fig. 1: Increasing the number of completeness statements for short (left) and long
queries (right)

Influence of the Number of Completeness Statements In this scenario, we vary the pa-
rameter Nc within the range of 100,000 – 1,100,000. Figure 1 shows the resulting re-
trieval times. The left figure is for short and the right figure for long queries. The y-axis
is in log-scale. As can be clearly seen, inverted indexing is always slower than the other
techniques for all types of queries. It is on average 40× slower than the tries for short
queries and 25× slower than standard hashing for long queries. The performance com-
parison of standard hashing and the tries, however, depends on the length of the queries.
For short queries, standard hashing clearly wins. On average, it is faster by a factor of 3.
For long queries, the tries technique is faster, though the retrieval time grows to reach
the time for standard hashing. It is also noticeable that standard hashing has a near con-
stant retrieval time, while the other two become slower as the number of statements
increases.

One possible reason why inverted indexing is so slow is that it has to process all
statements whose predicates overlap with the predicates of the query. Hence, with in-
verted indexing the probability for a new completeness statement to be processed in
the retrieval is much larger than for other retrieval techniques. The other techniques
only process statements whose predicates are clearly contained in the query predicates.
For standard hashing, the growth is almost unnoticeable because it always evaluates the
same set equality queries, albeit over larger collections of statements. For long queries,
the tries perform better than the standard hashing. This is likely to be due to the way in
which it prunes the set of statements down to the predicate-relevant ones, as described
in Section 3.3.

Influence of the Number of IRIs for Predicates In this scenario, we vary the parameter
Np within the range of 400 – 2,800. Figure 2 shows the resulting retrieval times. Both
of the graphs clearly show a decrease of the retrieval time for inverted indexing and
tries. Interestingly, standard hashing does not share that behavior, as the retrieval time
remains constant. Inverted indexing technique still performs worst, as it is on average

400 800 1,200 1,600 2,000 2,400 2,800
101

102

103

104

Number of IRIs for Predicates

R
et

ri
ev

al
Ti

m
e

in
µ

s

400 800 1,200 1,600 2,000 2,400 2,800

103

104

105

Number of IRIs for Predicates

R
et

ri
ev

al
Ti

m
e

in
µ

s

Standard Hashing Inverted Trie

Fig. 2: Increasing the number of IRIs for predicates for short (left) and long queries
(right)

about 70× slower than the tries for short queries, and 60× slower for long queries.
Though standard hashing clearly outperforms the other techniques for short queries,
it starts to be outperformed by the tries for long queries, with the crossover point at
Np = 1,600.

The decreasing trends for inverted indexing and tries are likely to be due to what we
discussed in Section 3.2: in randomly generated statements, the more the IRIs, the less
probable it is for a completeness statement to be predicate-relevant. For the standard
hashing technique, we do not observe any decrease of the retrieval time for the same
reason as in the previous experiment scenario.

Influence of the Length of Completeness Statements In this scenario, we vary the max-
imum length Lc of completeness statements from 1 to 11. Figure 3 shows the resulting
retrieval times. Interestingly, the retrieval time for inverted indexing increases, while
the time for tries even decreases. Basically, the retrieval time for standard hashing re-
mains constant, though this time, it shows a little oscillation with no clear pattern. We
notice that for long queries, the retrieval times for standard hashing and tries cross over
at Lc = 7. Again, inverted indexing performs worst, being about 60× slower than the
tries for both short and long queries when Lc = 11.

These graphs demonstrate the fundamental difference between the inverted indexes
and the tries. In the inverted indexes, a completeness statement with just a single pred-
icate overlapping with the query is included in the bag union, to be checked if the
statement’s occurrences in the union are the same as its length. Thus, the longer the
completeness statement, the more probable it is for the statement to be included in the
bag union. This does not happen with the trie-based technique as it only processes state-
ments all of whose predicates are contained in the query. When a statement becomes
longer, the probability of the statement to be processed by the tries technique decreases.
That the growth is constant for standard hashing, is likely to be due to the same reasons
as in the previous scenarios.

1 3 5 7 9 11
101

102

103

Max Length of CSs

R
et

ri
ev

al
Ti

m
e

in
µ

s

1 3 5 7 9 11

103

104

Max Length of CSs

R
et

ri
ev

al
Ti

m
e

in
µ

s

Standard Hashing Inverted Trie

Fig. 3: Increasing maximum length of completeness statements for short (left) and long
queries (right)

Influence of the Query Length In this scenario, we vary the query length Lq from 1
to 22. Figure 4 shows the results of this experiment. From the graph, we can see that
for all techniques, the retrieval time increases with the query length, though at different
rates. For standard hashing, it grows exponentially, whereas for the other techniques, it
only grows linearly.10 In the beginning, the standard hashing technique performs better
than the other two. However, from Lq = 10 on for the tries and Lq = 19 for inverted
indexing, the standard hashing technique starts to perform worse. At Lq = 22, standard
hashing is about 50× slower than inverted indexing, and even about 1,700× slower than
the tries. We observe a similarity between the asymptotic growth of inverted indexing
and tries, though on an absolute scale the tries technique performs better.

As we expected, standard hashing does not perform well for long queries due to its
exponentially many set equality queries. The tries technique, though showing exponen-
tial growth in the worst case, performs better than standard hashing. This is most likely
due to its pruning in the retrieval, as the tries technique works based on subsequences
of the predicates in the query.

From the experiments we conclude that in almost all cases, our baseline approach,
the standard hashing, shows the best performance despite its simplicity. However, for
long queries, the tries technique is comparable to the baseline, and is even much bet-
ter for extremely long queries. The baseline approach is infeasible for extremely long
queries due to its exponential blow up. The inverted indexes are not suitable for the re-
trieval task as even though they have the same asymptotic growth as the tries for all the
scenarios except the one varying the statement length Lc, the absolute retrieval times are
much worse than those of the tries. Moreover, on an absolute scale, the retrieval time of
the best technique of each scenario only takes up to 1,000 µs (1 ms). This shows that
the retrieval process does not add a significant overhead to completeness reasoning.

10 Note that the graph is displayed in log-scale on y-axis.

1 4 7 10 13 16 19 22

101

102

103

104

105

106

Query Length

R
et

ri
ev

al
Ti

m
e

in
µ

s

Standard Hashing Inverted Trie

Fig. 4: Increasing the query length

4.3 Overhead of Completeness Reasoning

This scenario differs from the above in that now we compare the cost of complete-
ness reasoning with the cost of query evaluation. We show that applying the predicate-
relevance principle can considerably reduce the overhead incurred by completeness rea-
soning.

To measure this overhead, we perform experiments that compare the running times
of plain completeness reasoning, of reasoning based on predicate-relevance, and of
query evaluation. For the reasoning based on predicate-relevance, we use the standard
hashing retrieval technique. All the parameter values are the default ones: Np = 2,000,
Nc = 1,000,000, and Lc = 10, while we still distinguish between short queries (Lq = 3)
and long queries (Lq = 10). For each kind, we randomly generate 20 queries, so that in
total there are 40 randomly generated queries. For query evaluation, we map each pred-
icate of the generated query to a property in the DBpedia Ontology,11 map the constant
in the query to a fixed DBpedia resource, and leave the variables as they are.

In the experiments we measure the reasoning time for plain completeness reasoning,
the reasoning plus the retrieval time for the completeness reasoning based on predicate-
relevance, and the query evaluation time. We set up a local DBpedia mirror on Virtuoso
with a Dual Core Intel Xeon Processor with 2.66 GHz and 16 GB RAM.

Now we discuss the experimental results. Table 2 lists the median of running times
of plain completeness reasoning, predicate-relevance based completeness reasoning,
and query evaluation. We note that completeness reasoning based on predicate-relevance
is considerably faster than the plain one (i.e., milliseconds vs. minutes, respectively),
and almost as fast as query evaluation.

Completeness reasoning without the predicate-relevance principle is clearly infea-
sible, with running times between 30,000 times (for short queries) and 10,000 times
(for long queries) slower than with predicate-relevance.This is due to the fact that much

11 http://oldwiki.dbpedia.org/Downloads2014#dbpedia-ontology

http://oldwiki.dbpedia.org/Downloads2014#dbpedia-ontology

Table 2: Comparison of the running time median for plain completeness reasoning,
predicate-relevance based (optimized) reasoning, and query evaluation

Query Types Plain Reasoning Optimized Reasoning Query Evaluation

Short 758,001 ms 24 ms 20 ms
Long 781,286 ms 80 ms 36 ms

fewer completeness statements are considered for the reasoning using the predicate-
relevance principle. For short queries, there are on average about 160 predicate-relevant
completeness statements, whereas for long queries, there are on average about 510
predicate-relevant statements. On the other hand, the original set contains 1 million
statements.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

Query ID

R
un

tim
e

in
m

s

Optimized Reasoning Query Evaluation

Fig. 5: Individual comparison of predicate-relevance based (optimized) completeness
reasoning and query evaluation for short queries

For short queries, evaluation is just slightly faster than optimized completeness rea-
soning (20 ms vs. 24 ms), while for long queries, it is about two times faster (36 ms vs.
80 ms). The median of the overhead for all queries is 1.2× for the short ones and 2.4× for
the long ones. In the experiments, query evaluation was fast, since all queries produce
empty results over DBpedia, as the queries are generated randomly. Note that this is in
fact the best case for query evaluation. Hence, this shows that the predicate-relevance
based reasoning does not add much overhead to query evaluation, as real queries are

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0

20

40

60

80

100

120

Query ID

R
un

tim
e

in
m

s

Optimized Reasoning Query Evaluation

Fig. 6: Individual comparison of predicate-relevance based (optimized) completeness
reasoning and query evaluation for long queries

likely to return some results, and hence take longer to evaluate. More detailed compar-
isons can be seen in Figures 5 and 6, which comfront the predicate-relevance based rea-
soning time and execution time for individual queries. In Figure 5, we see that in most
of the cases reasoning is almost as fast as query evaluation, with the exception of three
cases where reasoning performs slightly better. In Figure 6, we see that in all cases,
query evaluation is faster than completeness reasoning. Note that this is due to long
queries generating more predicate-relevant statements, hence increasing the reasoning
time. From these experiments, we conclude two things: that the predicate-relevance
principle can effectively reduce the completeness reasoning time, and that predicate-
relevance based completeness reasoning does not add much overhead to query evalua-
tion.

4.4 Conclusions from the Experiments

In this section, we addressed the problem of performing completeness reasoning over
large sets of completeness statements. In general, one can perform reasoning by con-
sidering all completeness statements of the data source. However, this is problematic
for large sets of statements. In our experiments, we found that reasoning with 1 mil-
lion statements took up to 13 minutes. Thus, we introduced the predicate-relevance
principle as a means to reduce the number of completeness statements considered in
completeness reasoning. To realize the predicate-relevance principle, we developed re-
trieval techniques based on three different index structures, namely standard hash maps,
inverted indexes, and tries. As an outcome of our experimental evaluation, both stan-
dard hashing and tries allow for fast retrieval of predicate-relevant statements. While

standard hashing technique is suitable in the general case, the tries technique is more
appropriate for border cases (e.g., extremely long queries). In the end, in our evaluation
we found that completeness reasoning using the predicate-relevance principle ran faster
than the plain one by a factor of 30,000 for short queries and 10,000 for long queries.
Consequently, the overhead of completeness reasoning is considerably reduced and the
running time becomes comparable to that of query evaluation. In our experiments, query
evaluation was just slightly faster than completeness reasoning for short queries (20 ms
vs. 24 ms), and was about twice as fast for long queries (36 ms vs. 80 ms).

As a note, we have dealt with synthetic data only, as real data is not available
yet. We assumed a uniform distribution of data, though in reality, data can be skewed.
Skewedness appears naturally in a data source with a limited domain. In such a case,
one may refine the relevance principle by taking also the subjects and objects positions
into account. An open question then is how to handle variables, as we cannot assume
that subjects or objects are constants.

5 Conclusions

Real-world RDF data sources like DBpedia may contain a large amount of data. Conse-
quently, to describe their completeness one would need a large number of completeness
statements. We presented techniques for efficient completeness reasoning over large
sets of statements based on the predicate-relevance principle to rule out a significant
number of irrelevant statements in completeness reasoning. We developed several re-
trieval techniques for predicate-relevant statements based on different index structures.
From our experimental evaluations, we concluded that our techniques can considerably
reduce the time needed for completeness reasoning, and make it comparable to query
evaluation time.

References

1. Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. Describing Linked
Datasets with the VoID Vocabulary. W3C Interest Group Note, 3 March 2011. Retrieved
Feb 1, 2015 from http://www.w3.org/TR/2011/NOTE-void-20110303/.

2. Mario Arias, Javier D. Fernández, Miguel A. Martı́nez-Prieto, and Pablo de la Fuente. An
Empirical Study of Real-World SPARQL Queries. In Proceedings of the 1st International
Workshop on Usage Analysis and the Web of Data (USEWOD’11), 2011.

3. Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard
Cyganiak, and Sebastian Hellmann. DBpedia – A Crystallization Point for the Web of Data.
Journal of Web Semantics, 7(3), 2009.

4. Dan Brickley and Ramanathan V. Guha, editors. RDF Vocabulary Description Language
1.0: RDF Schema. W3C Recommendation, 10 February 2004. Retrieved Feb 1, 2015 from
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

5. Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Conjunctive Queries in
Relational Data Bases. In Proceedings of the 9th ACM Symposium on Theory of Computing
(STOC’77), 1977.

6. Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon Razniewski. Completeness Statements
About RDF Data Sources and Their Use for Query Answering. In Proceedings of the 12th

International Semantic Web Conference (ISWC’13), 2013.

http://www.w3.org/TR/2011/NOTE-void-20110303/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

7. Steve Harris and Andy Seaborne, editors. SPARQL 1.1 Query Language. W3C Recom-
mendation, 21 March 2013. Retrieved Feb 1, 2015 from http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/.

8. Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool,
2011.

9. Sven Helmer and Guido Moerkotte. A Performance Study of Four Index Structures for Set-
Valued Attributes of Low Cardinality. VLDB Journal, 12(3), 2003.

10. Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Sebastian
Rudolph, editors. OWL 2 Web Ontology Language Document Overview (Second Edi-
tion). W3C Recommendation, 11 December 2012. Retrieved Feb 1, 2015 from http:
//www.w3.org/TR/2012/REC-owl2-primer-20121211/.

11. Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Gerard
de Melo, and Gerhard Weikum. YAGO2: Exploring and Querying World Knowledge in
Time, Space, Context, and Many Languages. In Proceedings of the 20th International Con-
ference on World Wide Web (WWW’11), 2011.

12. Jörg Hoffmann and Jana Koehler. A New Method to Index and Query Sets. In Proceedings
of the 16th International Joint Conference on Artificial Intelligence (IJCAI’99), 1999.

13. Graham Klyne and Jeremy J. Carroll, editors. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation, 10 February 2004. Retrieved Feb 1,
2015 from http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

14. Sergey Melnik and Hector Garcia-Molina. Adaptive Algorithms for Set Containment Joins.
ACM Trans. Database Syst., 28(1), 2003.

15. Amihai Motro. Integrity = Validity + Completeness. ACM Trans. Database Syst., 14(4),
1989.

16. Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Complexity of
SPARQL. ACM Trans. Database Syst., 34(3), 2009.

17. Iztok Savnik. Index Data Structure for Fast Subset and Superset Queries. In International
Cross Domain Conference and Workshop (CD-ARES’13), 2013.

18. Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. An Efficient Indexing Technique for
Full-Text Databases. In Proceedings of the 18th International Conference on Very Large
Data Bases (VLDB’92), 1992.

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

	Toward Efficient Techniques for Completeness Reasoning

